Problems of rolling bearing life in small turbojet engines
Boleslaw Giemza, Paweł Jozwik
1) Division for Fuels and Lubricants, Air Force Institute of Technology,
Ksiecia Bolesława Street 6, 01-494 Warsaw, Poland.
2) Department of Advanced Materials and Technology, Military University of Technology,
Kaliskiego Street 2, 00-908 Warsaw, Poland.

*Corresponding e-mail: boleslaw.giemza@itwl.pl

Keywords: Hybrid rolling bearings; Si$_3$N$_4$ ball; small turbojet engines

ABSTRACT – This paper presents investigations results of several worn rolling hybrid bearings with ceramic Si$_3$N$_4$ balls and steel raceways – 608 type. Bearings were acquired from small turbojet engines, used in aircraft models, after its have reached the service life. Authors used scanning electron microscopy, light optical microscopy and non-contact profilometry techniques for bearing elements examination.

1. INTRODUCTION
In modern turbojets rolling bearing are used for rotors supporting. The life of this bearings limited by rolling contact fatigue (RCF) and wear depends strongly on hard working condition like:
 a) vibratory stresses,
 b) bending moments,
 c) high rotation speed,
 d) elevated temperature,
 e) insufficient lubrication.
Using new technologies in high-speed rolling bearing system, as the use of ceramic balls, improves load bearing capacity, durability, and resistance to temperature etc. However, this results in service the problems associated with the properties of used ceramic materials – particularly high hardness and brittleness.

This paper present results of fatigue and wear investigation of bearings with ceramic balls applied in small turbojet engines.

2. METHODOLOGY
Investigations concern several 608 type hybrid bearings – ceramic Si$_3$N$_4$ balls and steel raceways. Worn, examined bearings were acquired from small turbojet engines, used in aircraft models, after its have reached the service life.

The following research techniques were used for bearing elements (ceramic balls and inner raceways) test:
 a) scanning electron microscopy (SEM),
 b) light optical microscopy (LOM),
 c) non-contact profilometry.

3. RESULTS AND DISCUSSION
Research results contain information concerning:
 1. LOM and SEM research:
 a) quality and quantity description of detected objects,
 b) distribution of the chemical composition (SEM),
 c) identification of impurities and fractures and microfractures,
 d) identification of fatigue and wear effects.
 2. Non-contact profilometry (NCP) research:
 a) identification of fatigue and wear effects,
 b) microsurface topography of worn parts,
 c) microprofiles of worn surfaces.

Typical SEM results are shown on Figure 1 and 2.

Figure 1 Fatigue symptoms – micropitting – on inner raceway of tested ball bearing.

Figure 2 Delaminated debris of ceramic ball embedded in the surface of the inner raceway.
Typical LOM results are shown on Figure 3 and 4.

Figure 3 Worn surface of worn Si₃N₄ ball – bright field, 100μm scale (10x20).

Figure 4 Worn surface of worn Si₃N₄ ball – bright field DIC, 10μm scale (10x100).

Typical NCP results are shown on Figure 5 and 6.

Figure 5 General 3D view of worn ball spherical surface – pseudocolour map.

Figure 6 General 3D view of worn ball surface with substracted sphere – pseudocolour map.

4. CONCLUSIONS

Main types of tribological wear of examined bearings were as following:

- micropitting and microspalling – on balls and inner raceways surface,
- embedding of hard particles in the surface of the inner raceway.

These processes resulted in a reduced service-life of examined bearings in minijets.

5. ACKNOWLEDGEMENT

Authors are grateful to Thomas Sykula and OPTOTOM for sharing Confovis non-contact profilometer.

6. REFERENCES